Visual Analysis of Heterogeneous Text Data based on Federated Learning
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Figure 1: The main interface for analyzing the heterogeneous text data via federated learning cooperation. (a) The hyperparameter
adjustment component allows users to fine-tune hyperparameters interactively. (b) The heterogeneous data detection component
provides visual monitoring of heterogeneous text data in federated learning, enabling quality evaluation of server-side and
client-side datasets, and detecting data using images as references. (c) The model neural network component offers a neural
network visualization with server-side test set data, facilitating model inference interpretation. (d) The global model update
components monitor the parameter updates from clients to the server, evaluate each client’s contributions to the global model
updates, and assess the impact of clients on specific model parameters. (¢) The model performance evaluation component is
updated in real-time during the federated learning training process, displaying the performance metrics of the global model in

testing.

ABSTRACT

In recent years, with the rise of distributed computing and increasing
emphasis on privacy by people, NLP Federated Learning has rapidly
emerged. As a distributed deep learning model, federated learning
allows users to use local data for model training while protecting
privacy. However, the heterogeneity of data in federated learning
presents significant challenges for model training, such as device
unavailability or difficulty in model convergence. Moreover, the
privacy-preserved nature of federated learning makes it challeng-
ing for researchers to observe data distribution clearly and adjust
the model accordingly. To address these issues, we developed a
visualization tool aimed at helping users explore the impact of het-
erogeneous text data so that researchers can design more efficient
models. In our solution, we show researchers the distribution of data
between clients and servers, as well as the state of the neural network
during the training process. To allow researchers to tune models
more quickly, we also provide options for adjusting deep learning
parameters, selecting multiple datasets, and intuitively displaying
training results. Our tool can support users to design more realistic
and optimized models. The effectiveness of the visualization tool
was validated by an expert review.

Keywords: Heterogeneous data, visualization, federated learning,
natural language processing
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With the development of the Internet, an increasing number of mo-
bile devices are being used, generating vast amounts of data that hold
tremendous value [17]. These data are always distributed among
different owners, restricted by laws and privacy policies, making
it difficult to aggregate or directly share them among different re-
gions or organizations [11]. Federated learning—a distributed model
training approach that conducts on users’ devices and aggregates the
updated weights on a central server-has emerged as a promising so-
lution [15], as it can effectively address the problem of information
silos while preserving user privacy. Especially in Vertical Federated
Learning, users only need to share their respective trained model
weights information of their own features instead of sharing raw
data. This approach is particularly suitable in scenarios where data
is sensitive and homogenous data types. Given its advantages, ver-
tical federated learning has been widely applied in fields such as
healthcare [29], finance [14], government administration [6], and
natural language processing [30].

INTRODUCTION



However, one of the most critical challenges of vertical federated
learning is data heterogeneity. Not identically and independently
distributed data (Non-IID) can lead to weight divergence in local
models [8,33], resulting in increased complexity of modeling and
theoretical analysis [9]. Additionally, it can make the model difficult
to converge and significantly reduce accuracy [3]. Processing natural
language processing (NLP) data in federated learning poses a signif-
icant challenge due to the diversity of natural language expressions,
language characteristics, and domain knowledge across various ap-
plication fields. This makes solving the data heterogeneity problem
in NLP data a challenging task. For example, if a client’s data con-
tains more specialized vocabulary than other clients, the model may
overemphasize these unique features, leading to poor overall data
generalization. On the other hand, clients with insufficient training
data may train inadequate models, which could adversely affect
upstream collaborations with other functionalities.

Various efforts have been made to address the challenge of data
heterogeneity in federated learning, primarily focusing on two com-
plementary aspects: improving the efficiency of model aggregation
and limiting the bias caused by local models to the global model [16].
However, these approaches have mostly been validated only on im-
age datasets, and there is still a limited amount of research and
application in the field of natural language processing [10], dispite
its importance in various domains. Furthermore, the non-visibility
of data in federated learning makes it difficult to adjust the model in
the presence of Non-IID data, further adding to the complexity of
the task.

In this paper, we propose a visual analytic approach to assist
users in analyzing the impact of heterogeneous data in NLP feder-
ated learning. Our aim is to help users explore various aspects of
NLP federated learning under Non-IID conditions, including data
distribution, feature selection, neural network dynamics, and model
parameter optimization. The contributions of this paper include the
following:

* We develop a novel visual analysis tool to assist in analyzing

the impact of heterogeneous data in NLP-FL models.

* A dynamic interface is provided to help users understand the
changes of neural networks and parameters during the feder-
ated learning process.

* We assist users in gaining a visual understanding of NLP-FL
models and designing better federated learning models.

2 RELATED WORK

In this section, we review relevant work on NLP in federation learn-
ing, heterogeneous data in federation learning, as well as on visual
model analysis.

2.1 NLP in Federated Learning

NLP data is often scattered among many different data holders and
contains extremely sensitive information [29]. Federated Learning
(FL), a decentralized machine learning approach, can aggregate data
from distributed sources without centralizing the data and effectively
address issues such as data shafts, data privacy, and data security [34].
Therefore, researchers continue to explore the application of FL in
NLP tasks to meet the growing demand for natural language data
analysis.

Currently, the application of FL in NLP tasks has been successful
in many fields, such as sentiment analysis [18], text classification
[1], and machine translation [19]. In terms of platform design,
Lin et al. designed a benchmark framework [10] for evaluating
federation learning performance on various tasks and implemented
a common interface between Transformer-based language models
and federation learning methods under various non-IID partitioning
strategies. Cai et al. proposed the FedAdapter framework [2] to
improve the model convergence speed of NLP-FL.

However, NLP-FL also faces challenges due to the inherent nature
of natural language, such as data imbalance caused by distributional
differences across devices, making it difficult to learn a model that
generalizes well. The parameter size of the pre-trained model is
also an issue, which can make it challenging to converge during
federated learning [12]. To address these challenges, we aim to
make each step of the federation learning training process transparent
to users. This will help them understand how data distribution and
parameter changes impact the model, ultimately improving modeling
efficiency.

2.2 Heterogeneity in Federated Learning

Heterogeneity in federation learning arises from many sources, in-
cluding heterogeneous feature spaces, unbalanced data distributions,
unstable network connections, and limited device resources. The
main approaches to cope with data imbalance focus on three aspects,
such as designing new loss functions, performing data expansion,
and using data sampling [4,5,21].

In this paper, we focus on addressing and showing users the
heterogeneity caused by unbalanced data distribution. The academic
community is currently focusing on three aspects of data sampling,
data expansion, and designing new loss functions to cope with data
imbalance [11].

Improvements to the cross-entropy loss function [20] or the use
of inverse distance aggregation [31] can to some extent alleviate the
performance degradation caused by data imbalance. However, these
methods for designing loss functions have limitations, as they only
show significant effects on some tasks and datasets. Undersampling
most of the types according to the data distribution of different
samples is also one of the solutions, however, this approach leads
to an insufficient number of certain categories and thus makes it
difficult to classify these categories accurately [28]. Hao and Zhang
et al. verified the effectiveness of data augmentation in overcoming
the effects of heterogeneous data for federal learning from different
perspectives [7,32].

However, these methods have only been validated on partial image
datasets or are only effective in classification tasks. It is more
important for FL to use visualization methods to enable users to
better understand heterogeneous problems and thus design more
generalized models.

2.3 Visual Model Analysis

The visual model analysis in machine learning is divided into three
main categories: monitoring model performance fluctuations, check-
ing model configuration, and input and output analysis [26].

In the existing applications, the FATEBoard component under
the FATE framework can visually display contents such as logs and
evaluation results to monitor model performance fluctuations, how-
ever, it is not able to provide detailed fault analysis on the client
side [27]. HetVis [26] derives the presence of heterogeneous data
by observing anomalies in the training process and allows users to
observe the distribution and check for dissimilar clusters. Li et al.
designed a visualization tool HFLens [9] specifically for longitudi-
nal federated learning (HVL), which allows simple inspection of
model performance for correlation analysis, and potential anomaly
checking. However, the model is customized for FATE, it may not be
readily applicable to longitudinal federated learning more broadly.

To check the details of the model configuration, GANViz [25]
observes the impact of a feature on the global model by comparing
image features, while DGMTracker [13] locates the neurons that are
causing the model to fail in training. Jesse Vig designed a complete
set of visualization tools [22,24] that allow users to enter sentences
on their own and observe the changes in the bert or transformer
neural network during training.



3 DESIGN CONSIDERATIONS

In this section, we illustrate the design aspects of the visualization
system, including the target users, the requirements analysis, and the
overall architecture of the system.

3.1 Target Users and Tasks

The system is designed for researchers and enterprises working in
the field of FL, with interactive visualization tools that facilitate
their research and work by presenting complex datasets, models,
and parameters. Specifically, the proposed visualization system
can be particularly useful for researchers in academia and industry
who are interested in FL, machine learning, and natural language
processing. By utilizing visual tools to explore and analyze client
data distribution, datasets’ features, and other factors related to FL
in NLP, researchers can better understand the impact of parameters
and fine-tune the model for optimal performance.

One of the key benefits of the proposed visualization techniques
is the ability to compare the global and local models in FL. This
allows researchers to observe how different clients contribute to the
overall performance of the global model, and identify any potential
bottlenecks or imbalances in the training process. Furthermore,
by visualizing the data distribution and model parameters for each
client, researchers can gain insights into the factors that affect model
performance, and make informed decisions on how to adjust the
model to improve the accuracy. The visualization tools can also
provide a framework for monitoring the training process and tracking
changes in the model over time, helping researchers to evaluate the
effectiveness of different training strategies and optimize the model
for specific NLP tasks.

3.2 Requirements Analysis

The process of collecting requirements for the FL visualization
system involved several discussions with experts in the related
field. These discussions were conducted in various ways, including
face-to-face meetings, phone calls, and email exchanges. The
experts included researchers, practitioners, and industry profes-
sionals who have experience working with FL and/or NLP. During
the discussions, we asked the experts to share their opinions and
insights on a range of topics related to the visualization of FL
and NLP. Specifically, we sought their feedback on the current
challenges and opportunities in the field, the potential benefits and
limitations of different visualization techniques, and the features
that would be most critical in a successful visualization system. By
gathering input from these experts, we were able to identify several
key requirements for the visualization system:

R1. The Impact of Data Heterogeneity: To successfully train
an FL model, it is critical to account for the heterogeneity of data
across devices. Independent training of models on each device
results in data being saved solely on the local devices, with only
model parameters sent to the server for aggregation. Therefore, the
global model’s performance relies on the local data distribution’s
similarity across all devices. Understanding and identifying how
heterogeneous data affects the global model and the FL process can
significantly benefit the users.

R1.1 Detecting Non-IID data. FL faces significant challenges due
to the Non-IID nature of data distribution across participating
clients. This Non-IID property leads to the performance degra-
dation of trained models. Visualizations can provide intuitive
visual analysis of the data and identify clients with Non-IID
data, which can help to mitigate the negative effects of Non-IID.
Researchers can use these visualizations to better understand
how Non-IID data is distributed across the clients and detect
clients with anomalous or biased data to resolve the problem in
FL.

R1.2 Observing the parameter updates. The global model on the
server side is iteratively updated based on the parameter received
from the participating clients. However, due to data hetero-
geneity, these parameter updates returned by clients may have
significant differences or even conflicts. Visualizing the parame-
ter updates can assist users in quickly identifying the differences
in parameter updates between clients and detecting clients with
conflicting updates. Quantifying and visualizing these parameter
updates would allow researchers to understand and account for
the variability in training data across the participating clients. It
can also inform decision-making on how to measure the contri-
butions from each client’s updates appropriately, facilitating ac-
curate communication and aggregation of model updates across
the federation of devices.

R2. Model Performance: Model performance is of critical impor-
tance to users, as it directly affects the quality of the final model.
Due to the distributed nature of FL, the performance requirements
for such models are often high, as they have to perform accurately
on each user’s local data while also providing good performance on
the aggregated data. As such, users may need to evaluate the perfor-
mance of models using various benchmarking techniques to ensure
that the resulting models are both accurate and comprehensive.

R2.1 Dynamic displaying model performance. The system should
allow users to receive real-time feedback on model performance
and identify issues as they arise. By providing constant updates
on key performance metrics, dynamic displaying can help users
make informed decisions about their models and streamline the
training process.

R2.2 Demonstrating the neural network layers. Visualizing neural
network layers provides valuable insights into the performance
and internal workings of machine learning models in FL. It
can help users understand which layers are most significant in
driving model behavior and identify potential performance issues
or biases. By visualizing these layers, users can also gain deeper
insight into how their data is being transformed and processed
through the neural network. Additionally, layer visualization can
be used to identify and understand the impact of any changes
made to the model architecture on its overall performance.

R3. Interactivity: For a successful and effective Federated Learning

process, users require visual analysis systems that possess strong

interactivity capabilities and can seamlessly interact with data and
backend FL modules.

R3.1 Allowing interacting with the generated charts. Users  can
manipulate visualizations dynamically based on their needs
and preferences, improving the overall understanding of the
data. Interactive charts offer a high level of flexibility and
customization, enabling users to explore visual representations
of complex information more intuitively.

R3.2 Allowing hyperparameter adjustments. Based on the feed-
back from the majority of users we interviewed, the ability to
adjust FL hyperparameters through an interactive interface is
highly desirable and in high demand. FL involves multiple par-
ties sharing model updates without sharing raw data, which can
lead to complex optimization challenges that require tuning of
hyperparameters. By allowing users to interactively adjust hy-
perparameters in real-time, they can train the models easily with
various settings, optimize their models faster, and ultimately
achieve improved performance.

4 HETEROGENEOUS TEXT DATA VISUALIZATION

In this section, we will systematically describe the entire heteroge-
neous text data visualization system and its components.

4.1 System Overview

Our system is structured into three main modules:



¢ A simulation module for vertical FL, which could simulate the

vertical FL process in a real-world scenario.

* A data collection and visualization module that generates visu-

alizations based on the data generated during the FL process.

* A web-based user interface that presents the visualizations and

allows users to interactively adjust the hyperparameters of the
FL module.

The proposed simulation module facilitates the training of models
using vertical FL techniques. For implementing R1 requirement,
the availability of both global model data on the server side and
local model data on each client is necessary. Though in a real-
world FL scenario, accessing specific dataset information and local
model information on the server side is not feasible due to user
privacy concerns. However, given the requirements of local data
for R1, our FL simulation module is data-transparent and allows
the use of data generated throughout the FL process. Our proposed
strategy entails leveraging server-provided datasets and allocating
subsets datasets as training material to individual clients during the
simulation process within an FL scenario. The assembly of client-
specific training data forms the foundation of our data analysis and
visualization process, which serves as a key evaluation metric for
assessing both the effectiveness and efficiency of the FL process
and satisfies the R2 requirement. Moreover, we utilize the update
parameters returned by clients to examine the impact of local models
on the global model, as proposed in R1.

The data collection and visualization module plays a critical role
in collecting and visualizing key statistics related to the FL process,
including information on the dataset, model, and performance of the
system. By generating visualizations of these statistics, the module
satisfies the requirements outlined in the requirement analysis (R1,
R2), providing users with important insights about the behavior of
the FL algorithm and any abnormal data that might be present. The
generated visualizations demonstrate important aspects of the FL.
process, such as model accuracy, convergence rates, and potential
data drift. These insights help users assess the overall quality of the
dataset, identify any sources of bias or inadequacies, and evaluate
the effectiveness of the FL approach in achieving meaningful results.

The web-based user interface serves as a crucial entry point for
users to interact with the FL system. Through a user-friendly and
intuitive design, the interface displays meaningful visualizations
generated by the data collection and visualization module, providing
users with valuable insights into the performance and behavior of
the system. Furthermore, the user interface satisfies the requirement
specified in the requirement analysis (R3), allowing users to adjust
the hyperparameters of the FL. module directly through an inter-
active interface. Users can observe the effects of hyperparameter
adjustments on the generated visualizations, enabling them to evalu-
ate the effectiveness of different hyperparameter configurations for
achieving optimal performance.

These three system modules collectively constitute the framework
of our comprehensive FL visual analysis system. This system en-
ables a complete process from simulating vertical FL to information
visualization, meeting all user requirements collected during the re-
quirements analysis phase. By leveraging each of these modules, our
system extracts critical insights from the FL process, such as data
quality and model performance metrics, enabling users to evaluate
the effectiveness of the overall system at each step of the learn-
ing process. Through this analysis, our system provides valuable
feedback to help optimize the performance of the system over time,
ultimately leading to better outcomes and predictions.

4.2 Vertical Federated Learning

In order to simulate realistic vertical FL scenarios, we developed a
user interface that allowed for flexible hyperparameter adjustments
(Fig. 2), such as modifying the learning rate, iteration number, batch
size, and training dataset ratio for individual clients. Once users had

Data Channels

Model Parameter
Learning Rate 0.00001
Iteration Num 100

Batch Size 32

Client Training Dataset Ratio

Figure 2: The hyperparameters control component

made their hyperparameters selections, these hyperparameters were
confirmed and sent to the backend.

To accurately track the impact of heterogeneous data during the
FL process, we implemented a transparent and interpretable archi-
tecture. Each client was assigned a sub-training set by dividing the
entire dataset into subsets based on user-specified training set ratios.
At the end of each global epoch, the local clients would communi-
cate the updated parameter values to the server, which would then
update or generate new visualizations via a visualization module.
This approach facilitated transparency, interpretability, and interac-
tivity throughout the FL process. Our FL simulation allowed us to
evaluate the performance of vertical FL in realistic settings while
providing valuable insights into the impact of data heterogeneity on
learning outcomes.

4.3 Datasets Features

Labels Features Heatmap

Figure 3: Labels features heatmap

Prior to conducting FL, we preprocessed the training dataset
by transforming it into a feature representation with Named En-
tity Recognition (NER) labels. NER is a critical natural language
processing task with numerous applications, including information
extraction and machine translation. These NER labels served as
crucial features for FL in our simulated scenario.



Our visualization system includes a dedicated component for
NER analysis that examines transitions between adjacent named
entity labels. This feature generates a heatmap that demonstrates the
frequency of label transitions, allowing for a better understanding
of the classification process. Fig. 3 shows the heatmap, wherein
the x and y-axes represent the entity labels, and color intensity
represents the frequency of transitions between labels as the darker
red the higher frequency of transitions between two NER labels. The
heatmap facilitates the identification of frequently occurring label
pairs and highlights areas that may require further improvement. A
custom color gradient was also used to highlight label pairs with
higher frequencies, enhancing the accuracy of the visualization. The
chosen data encoding method, a heatmap, was selected for its ability
to illustrate the transition patterns between entity labels effectively.

The choice of adjacent NER tag conversion frequency as the

feature measure is based on two main reasons:
a) The NER adjacent tag conversion frequency is particularly valu-
able for handling heterogeneous text data. This type of data often
originates from various domains, languages, and text types, each
with unique entity characteristics and patterns. Consequently, NER
models need to be trained and evaluated on different data types. By
using the adjacent label conversion frequency as a proxy, it becomes
possible to guide the training and application of NER models across
diverse texts, spanning various domains, languages, and text types.
b) The frequency of adjacent label transitions can assess the NER
model’s performance. A good NER model should adhere to the
actual language’s entity occurrence rules, where the adjacent label
transition frequency should be aligned with the patterns of entity
occurrences in the language. If the NER model’s adjacent label
transition frequency does not match the language’s pattern, further
model tuning or dataset quality improvement may be needed. Under-
standing and analyzing transition patterns between entity labels are
vital for optimizing the model’s performance. By gaining insights
into the model’s decision-making process for adjacent labels using a
heatmap, we can identify areas for improvement and guide further
optimization of the model’s performance.

4.4 Client Heterogeneous Text Data Distribution

Client Heterogeneous Data Distribution
Client 1 -O- Client 2 -O- Client3 -O- Client4 -O- Client 5

Figure 4: Client heterogeneous data distribution statistics chart

In our simulated FL scenario, the client training data is a subset of
the server dataset sliced based on the hyperparameters provided by
the user. Therefore, the dataset is fully transparent and interpretable
in this simulation. We utilize a client heterogeneous data distribu-
tion statistics chart (Figure 4) to display the distribution of textual
data labels among different clients, assisting users in observing the
heterogeneous text data on each client. Through visualization, pat-
terns can be easily identified and insights obtained to assist NLP
model development or optimization. Furthermore, identifying the
distribution of named entity labels in different clients can help detect
any anomalies or errors in the data, which is crucial in FL settings,
to address label imbalance in clients and ensure that the model can
generalize well to new datasets.
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Figure 5: Model neural network visualization

4.5 Neural Network Display

Neural network visualization is a critical aspect of deep learning
research as it helps researchers gain insight into the behavior of
specific layers and feature propagation between them. This type of
visualization provides users with an intuitive understanding of how a
model performs classification and similarity calculations. Moreover,
it helps in optimizing the model and explaining its decision-making
process.

In our visualization system, we used the BERT model for NLP
tasks in the process of FL. To visualize the neural networks, we
chose Bertvis, which is an excellent tool for exploring the internal
workings of BERT models [23]. The data for BertVis visualization
in the study were selected based on the similarity calculation of the
test set used on the server side.

For the NER task, we measure the degree of similarity between
data by cosine similarity:
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Here, a and b are the two vectors being compared,  is the length of
the vectors, and a; and b; represent the i-th element of vectors a and
b, respectively.

Cosine similarity is a widely-used method for measuring the
similarity between two vectors. In the context of NLP, it is common
for different forms of the same named entity or co-referenced entities
to appear in different sentences. By applying cosine similarity to the
vectors representing the NER-related content of two sentences, we
can identify semantically related sentences despite the presence of
different entities or entity forms.

In the system’s data collection and visualization module, each
sentence is a vector, with each element of the vector representing
a specific NER label in the dataset. The value of each element
reflects the frequency of the corresponding NER label. The cosine
similarity measure is calculated for these vectors to estimate the
similarity between the NER-related content of two sentences. By
extracting the maximum similarity among all sentence pairs, we can
identify the most similar pair of sentences in terms of NER-related
content. The advantage of cosine similarity is its ability to consider
NER label frequency in each sentence and to account for sentence
variation in length and structure, making it well-suited to this task.



The method of selecting data for a visualization based on sim-
ilarity calculation enables the BertVis tool to concentrate on the
most pertinent and characteristic data for analysis and interpretation
(Fig. 7 5). The cosine similarity metric has been used effectively
to capture the semantic similarities between data points while con-
sidering the grouping of similar NER labels. This approach can be
readily modified to suit other NLP tasks and datasets for the purpose
of data selection and visualization.

It generates a BERT neural network visualization that comprises
input sequences, tokens, and attention matrices using the most simi-
lar pair of sentences in terms of NER-related content. The crucial
aspect of the visualization is the attention matrix, which quantifies
the relationship strength between different input tokens. To interpret
the attention scores, one considers Query (Q), Key (K), and the
attention operation. Q is the token being analyzed, and K repre-
sents other tokens. The element-wise product of Q and K (q x k)
calculate pairwise similarity, and the softmax of q x k yields atten-
tion scores indicating the importance of Key for predicting Query.
Users analyze the q x k matrix for the significant attention scores,
indicating highly relevant contextual information, and compare it to
other sequences for identifying regularities and anomalies of interest.
By visualizing the attention scores and patterns, users can identify
the significant features of the data that contribute to the model’s
performance and compare them across different clients. This allows
for better insights into the variance in the data and enables the model
to aggregate knowledge effectively.

4.6 Model Updates Contribution

Update Parameter

Figure 6: Client updates contribution polar coordinate chart

The model updates monitor consists of two visualization com-
ponents: a) one for monitoring the contribution of client parameter
updates in each epoch (Figure 6); b) one for observing the specific
updates of each update parameter returned by each client to the
global model in each epoch round (Figure 7).

a) The client contribution visualization is a component designed
to visualize client parameter updates during the FL process. When
the global model is updated after each FL round, the visualization
module receives a nested list containing epoch values and the differ-
ent parameter updates of each client for each epoch as input. This
module iterates through the client parameter updates of each epoch,
computes their L2 norms, and aggregates them to evaluate the over-
all client contribution. Finally, this aggregated L2 norm value is
visualized using a polar coordinate chart that stacks the contribution
of each client for each epoch.

|x]2 = \/Zi: 1"x? 2

Here, |x|, represents the L2 norm of vector x, x; represents the i
element of vector x, and n is the length of vector x.

The L2 norm is a mathematical concept that is commonly used as
a measure of the magnitude or the length of a vector. In the context
of FL, the client parameter updates can be seen as vectors, and
their L2 norm represents the magnitude of the update in a particular
direction in the parameter space. By calculating the L2 norm of the
client parameter updates, we can evaluate the amount of the update
and compare it with other updates in the same epoch. Moreover,
taking the sum of L2 norms across all clients during an epoch gives
an overall measure of the client contribution to the FL process for
that epoch.

Client Updates Contribution

Figure 7: Update parameters polar coordinate chart

b) When an epoch of FL is completed, the parameter update
from each client to the server will be visualized. By analyzing the
distribution of the updates in the polar graph, users can easily identify
patterns and discrepancies among the updates from different clients
and can gain insights into the characteristics of the heterogeneous
data. It also can help detect Non-IID data among clients.

In the polar graph, the distribution of the updates can be analyzed
to determine if there is a significant variation in the clients’ contribu-
tions to the global model. If clients with similar data distributions
produce similar updates, their data can be considered IID. However,
if the updates from different clients are widely distributed across the
polar graph without clear clustering, it may indicate that the clients
have non-IID data.

Moreover, the polar graph can also show if certain clients have
significantly different update magnitudes or directions compared
to others, which further suggests non-IID data. By detecting non-
IID data among clients, users can adjust the aggregation method to
ensure a more balanced contribution from each client, which can
improve the accuracy and fairness of the resulting global model.

4.7 Model Performance

Model Performance

precision

— Epochs

Figure 8: Performance

In the context of NLP-FL tasks, the textual data is inherently



complex, characterized by a wide range of text styles, languages,
and vocabularies. This poses significant challenges to the evaluation
of the model’s performance, as it is difficult to identify the specific
factors that contribute to the model’s performance. Hence, a com-
prehensive evaluation system is necessary to analyze and understand
the model’s performance.

To address this, we have designed a model training performance
window that provides researchers with real-time monitoring of the
model’s performance, including accuracy, recall, and F1 scores. This
allows researchers to easily detect potential issues with the model,
such as overfitting or underfitting, and to adjust the model parameters
timely. Furthermore, this also enables researchers to compare the
performance of different models and select the most effective one
for their specific NLP-FL task.

Our evaluation metrics offer a comprehensive view of the model’s
performance. Accuracy, recall, and F1 scores enable researchers
to measure the model’s ability to correctly predict the target vari-
able, identify the proportion of positive instances that are correctly
identified, and balance the trade-off between precision and recall.
This comprehensive evaluation system helps researchers to gain a
deeper understanding of their model’s strengths and weaknesses and
optimize the model accordingly.

5 [EVALUATION

We conducted half-hour interviews with three professionals, namely
s1, s2, and s3, who have more than 5 years of experience in the field
of federated learning. During the interview, we demonstrated our
system and provided a detailed introduction to the experts. After
gaining a comprehensive understanding of the system, the experts
were free to explore and evaluate it. At the end of each interview, we
collected feedback from the experts on three areas: usability, user
experience, and advice.

Usability: Regarding usability, the experts were presented with
a highly transparent NLP federated learning model and reached
a consensus that our system could be instrumental in exploring
and designing more efficient NLP models with heterogeneous data.
In particular, S2 found the visualization tool to closely simulate
a real-world federated learning environment, providing sufficient
parameters for visualizing the impact of data and parameter changes
on the model in an intuitive manner. Overall, our system was con-
sidered user-friendly and effective in enhancing the understanding
and optimization of NLP models in a federated learning setting.

User Experience: The user experience received positive feedback
from the experts, who appreciated the ability to display the global
model parameter update returned by each client in a polar coordinate
plot after each training round. S1 and S3 praised the feature that
displayed the global model parameter updates returned by each client
after each training epoch in a polar coordinate plot. S1 specifically
noted its ability to quickly identify clients with significant impact
on the model, facilitating adjustments to the aggregation strategy
without tweaking the training parameters. In terms of visual appeal,
all three experts found the neural network diagram in the center to
be eye-catching. Overall, this feature greatly enhanced their ability
to monitor and adjust the federated learning process.

Suggestions: While acknowledging the potential usefulness of
our system, the experts also offered constructive feedback and rec-
ommendations for its improvement. S1 suggested enhancing the in-
teractivity of the interface for observing client parameters by adding
a toolbar or other components to the right side of the screen, allowing
for changes in visualization settings to dynamically affect the other
visualizations on the page. Additionally, S1 recommended using
animations and other visual aids to better visualize changes in the
global model resulting from client parameter updates. S2 advised
expanding the system’s audience by incorporating additional NLP
models. Taking these suggestions into account could further enhance
the usability and effectiveness of our system in future applications.

6 LIMITATION

In this section, we critically examine the limitations of the current
NLP-FL system and outline future research directions based on
expert opinions.

Task Limitation: One of the primary limitations of our tool
is that it currently only supports the NER task. While NER is a
critical NLP component, other NLP tasks such as text classification,
sentiment analysis, and machine translation are crucial in many
real-world applications. These tasks produce various results, some
of which are challenging to evaluate making their integration into
our current system difficult. Additionally, our system is currently
limited to only four datasets, which may not adequately cover the
diversity of NLP tasks. Future research efforts can address this
limitation by expanding our platform to support additional NLP
tasks and datasets. By doing so, our system could provide a more
comprehensive framework for FL research covering a range of NLP
tasks.

Scalability Limitation: Our system is designed for scenarios
with a limited number of clients and struggles to visualize larger
volumes of data. As an increasing number of clients are added, the
interface can become cluttered, making it challenging to extract
meaningful information. Therefore, creating a scalable framework
that accommodates a large number of clients represents a critical
area of future research. Such a framework must support many clients
while providing an intuitive and user-friendly interface that allows
users to access essential information quickly. Future work could
explore incorporating features such as panning and zooming to
enable users to navigate the interface efficiently or implementing
advanced visualization techniques, such as dimensionality reduction
or clustering, to improve data processing capabilities. Ultimately,
these enhancements would enable our system to address a broader
range of FL scenarios, supporting more significant datasets and
ensuring high levels of scalability.

7 CONCLUSION

In the field of NLP, FL has emerged as a promising approach to
address the challenges of data privacy and heterogeneity. However,
FL models require careful design and development to ensure their
effectiveness. Evaluating the impact of textual heterogeneous data on
FL models is a particularly challenging task, as it involves analyzing
complex data structures and interactions among components of the
model.

To address this challenge, we have developed a visualization
system that provides researchers with a range of visualizations to aid
in exploring the impact of textual heterogeneous data on FL. models.
These tools enable users to examine parameter updates returned by
clients, data distribution, and the state of the neural network during
training, thereby providing valuable insights into the behavior of the
model and the effects of data and parameter changes.

An expert who has reviewed our visualization tools has validated
their effectiveness in facilitating the design and development of more
efficient FL models for NLP tasks. Our visualizations enable users
to explore the impact of textual heterogeneous data on FL. models,
empowering them to make informed decisions. By leveraging these
visualizations, our approach holds the potential to enhance the devel-
opment and deployment of FL models in NLP, promising improved
performance and efficiency.
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