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Abstract—We propose a novel 3D scene stylization method
called ERF(Multi-Attention Fusion Artistic Radiance Fields),
which achieves artistic style transfer by combining 2D stylized
images with the radiance fields of 3D scenes. ERF effectively
captures high-frequency complex visual information from stylized
images and transfers it to 3D scenes while maintaining multi-
view consistency. To generate geometrically and semantically
consistent novel view stylization effects while preserving the
visibility of the original scene, we introduce the Multi-Scale
Attention Module (EMA) and the CLIP module. Experimental
results show that compared to existing models, ERF exhibits
significantly higher stylization quality and detail expressiveness.

I. INTRODUCTION

To more accurately reconstruct scenes through implicit
representation methods, the technology of Neural Radiance
Fields (NeRF)[20] emerged. NeRF uses deep neural networks
to learn the complex mappings from captured images to
new image synthesis, effectively solving challenges in scene
reconstruction and rendering. It can quickly and with high
quality reconstruct scenes from videos or photos taken with
a smartphone. Currently, NeRF has been widely applied
and practically implemented in several fields, including Aug-
mented/Virtual Reality[22] and digital human[23].

Style transfer is one of the most popular areas in computer
vision, with most work focusing on transferring 2D artistic
styles to ordinary images[24]. However, extending 2D style
images to 3D scenes is a huge challenge[25]. This extension
not only involves complex geometric transformations, but also
requires ensuring style consistency with the three-dimensional
space. Our proposed ERF is a novel 3D scene stylization
method that achieves artistic style transfer by combining
2D stylized images with the radiance fields of 3D scenes.
Our method supports reconstructing 3D stylized works with
consistent spatial and temporal artistic styles from multiple
viewpoints of 2D images.

The method Arf[9] applied nearest-neighbor feature match-
ing(NNFM), which focuses on local image descriptions and
captures unique local details. However, this method tends to
overlook global style details, thereby reducing the quality of
stylized rendering. To address this problem, we propose a
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Fig. 1. The ERF achieves artistic style migration by combining 2D stylized
images with the radiation field of the 3D scene. It not only stylizes local
details, but also enhances global style migration by introducing EMA and
CLIP modules, and effectively injects the overall style into the 3D scene
through text and images, demonstrating higher stylization quality and detail
expression than existing methods.

multi-scale feature fusion method. This method processes the
original image through a parallel structure input into the VGG
network, combining local features from multiple input sources
to capture spatial information at different scales. By integrating
the outputs from different sub-networks, our approach learns
more comprehensive global style features while preserving
precise spatial structure details, thus enhancing the transfer
and expression capabilities of global style features.

To address the problem of loss of stylized details, we
extract the CLIP feature space using a pre-trained CLIP
module. Specifically, we employ a method we call the mapping
network, which transforms the CLIP feature space into content
feature space and style feature space. The computed content
loss helps ensure that important visual details and content
features are preserved during the style transfer process. Addi-
tionally, through a weakly supervised approach, the CLIP loss
assists the mapping network, making the style transfer process
more controllable.

We have demonstrated that ERF can transfer 3D artistic
features accurately from diverse and challenging 2D artistic
images to various complex 3D scenes. Compared to previous
techniques, our method achieves significant improvements
in visual quality, and avoids the over-smoothing and
blurriness that traditional methods may cause in stylized
views. Additionally, our method consistently outperforms the
baselines.

In summary, our contributions are:



1. Proposing a multi-scale feature fusion method that
captures global style features through a parallel processing
mechanism and VGG network, enhancing the detail
expression.

2. Utilizing a pre-trained CLIP module and a mapping
network to enhance the calculation of content loss, ensuring
the preservation of important visual details during the style
transfer process.

II. RELATED WORK

A. Style transfer on NeRF

The methods NeRF, Arf and Ref-npr [8][9] rather than
the traditional Gram method and instead adopt the NNFM
loss function to compute style transfer losses, where this
new method generates the target images via referencing any
arbitrary style images. However, Desrf[10] points out that the
generation performance of the aforementioned models is poor
when artistic images have multiple styles. In this case, Desrf
not only learns textures but also incorporates the geometric
shapes of reference artworks into the 3D scenes. On the other
hand, Stylerf[11] addresses the challenges of low geometric
quality and insufficient stylization in NeRF style transfer by
performing style transformations within NeRF’s feature space.
CoNeRF[6] introduces a mapping network to map the CLIP
feature space to the style feature space. SNeRF[12], through
alternating training of stylization optimization steps, addresses
the potential issues of jittery artifacts in traditional methods
during novel view synthesis and achieves zero-shot style
transfer through feature space transformation. Stylizednerf[13]
and Arf both employ VGG networks to extract and transform
image features for stylization. The difference lies in Stylized-
NeRF’s integration of 2D stylization capability and NeRF’s
3D consistency through mutual learning between 2D and 3D.

B. Text-to-image style conversion

The paper on Contrastive Language-Image Pretraining
(CLIP) [14]showcases impressive text-image matching ca-
pabilities and advanced feature extraction, leading to its
widespread adoption in enhancing 3D scene editing within
the field. CLIP-NeRF[15] introduces a decoupled conditional
NeRF architecture, adjusting shape by learning deformation
fields for positional encoding and deferring color adjustments
to the volume rendering stage. Additionally, it designs two
code mappers, taking CLIP embeddings as input and updat-
ing latent codes to reflect target edits. Unlike CLIP-NeRF,
LENeRF[16] combines NeRF’s 3D prior knowledge with
CLIP’s multimodal information, creating a framework capable
of generating high-fidelity and fine-grained 3D editing results
without additional datasets.

Blended-NeRF[17] creates the generation process via a text-
image model, where this process incorporates new priors,
enhancements, and volume blending techniques to seamlessly
integrate new objects into existing NeRF scenes naturally
and consistently. Similar to Blended-NeRF, concurrent work
Blending-NeRF[18] also employs CLIP models for 3D scene

Fig. 2. The workflow of ERF. An EMA module and a CLIP module are used
to extracted feature styles to the fusion radiance fields.

editing. However, unlike Blended-NeRF, the primary goal of
Blending-NeRF is to perform local edits on objects within
the scene, such as modifying textures and removing parts
of the original objects, rather than better integration of the
inserted objects into the scene. LERF[19] proposes a method
of embedding language into NeRF by rendering CLIP embed-
dings into training rays volumetrically, and then supervising
these embeddings within training views to provide multi-view
consistency and smooth underlying language spaces, thereby
achieving precise segmentation of objects within the scene.

III. METHOD

In this section, we propose a novel style transfer method
applied in neural radiance fields(NeRF)[20], i.e., using 2D
style images to transform the scene into the style of the
images after reconstructing a 3D scene from any given set
of photos. Building upon previous 3D stylization efforts, we
employ encoders and attention mechanisms to enhance the
stylization effect. Our main contribution is to introduce the
Multi-Scale Attention Module (EMA) module and the CLIP
Mapping Network module, both of which achieve outstanding
stylization effects while maintaining the recognizability of the
original scene. Fig. 2 illustrates an overview of our proposed
method. We will provide a detailed introduction to ERF in this
chapter.

A. Neural Radiance Field (NeRF)

To facilitate a better understanding of our approach, we
provide a brief introduction to Neural Radiance Fields (NeRF).
NeRF offer a novel approach to implicit representation, rep-
resenting the pioneering use of deep learning methods for
reconstructing 3D scenes.

Specifically, the reconstruction method of the radiance neu-
ral field involves emitting a ray r(t) into the scene from
any observational viewpoint, where the density σ(x) can be
understood as the probability of the ray terminating at position
x. The color C(r) of the camera ray r(t) = o+ td, with near
and far boundaries being tn and tf respectively, is:



Fig. 3. The EMA splits the input feature map into groups to capture a range
of semantic information. It applies parallel sub-networks with large receptive
fields for multi-scale spatial feature extraction. This design allows for precise
adjustment of channel importance and preservation of spatial details, which
is vital for the effective transfer of artistic styles in 3D scene stylization.

C(r) =

∫ tn

tf

T (t)σ(r(t))c(r(t), d)dt (1)

where T (t) = exp−
∫
tntσ(r(s))ds

The expression T (t) represents the cumulative transmit-
tance measured along a ray between tn and t, signifying the
likelihood that the ray traverses the distance from tn to t
unobstructed by any particles.

B. Attention-based feature extraction

Artworks often possess unique stylistic forms. Currently,
pretrained neural networks can effectively capture these stylis-
tic features and apply the styles of artworks to other 2D
images. Additionally, there is ongoing research exploring
the application of style transfer methods to the 3D vision.
While using VGG16[20] for style transfer on 2D images is
a favorable choice, it faces challenges in the 3D domain, as
it can only aggregate global information and may not capture
image details accurately. To address this challenge, we intro-

duce the Multi-Scale Attention Module (EMA) mechanism.
Specifically, the attention module integrates local features
from multiple input sources, enhancing model performance
through parallel processing and self-attention mechanisms.
While maintaining excellent feature representation capabili-
ties, this mechanism improves the model’s effectiveness in
style transfer tasks.

The EMA attention mechanism first divides the input feature
map along the channel dimension into multiple sub-feature
groups to capture different semantic information. It employs
parallel sub-networks to capture multiscale spatial information.
The process of extracting attention weight descriptors involves
three parallel pathways, with two in the 1x1 branch and one
in the 3x3 branch. The 1x1 branch includes two 1D global
average pooling operations for encoding information, followed
by the aggregation of two channel attention maps within
each group through multiplication. The 3x3 branch uses a
single 3x3 convolutional kernel to capture multiscale feature
representations. The structure of EMA is depicted in Fig. 3.

Additionally, the EMA mechanism incorporates a cross-
space information aggregation strategy to manage feature
interactions. These mechanisms effectively enhance the capa-
bility of extracting features from style images and original
scene features, thus improving fusion effects.

Afterwards, we use VGG to extract feature images. To
further ensure that the scenes remain consistent from multiple
perspectives, we employ the NNFM mentioned by Arf as the
loss function.

We denote Pstyle as the art image, and Pview as an image
rendered from the radiance field at a selected viewpoint. The
VGG feature map Mstyle and Mview are extracted for Pstyle

and Pview, and in particular, we define Pview(i, j) as the
feature vector at pixel location (i, j) of the feature map Mview.
The vector Pstyle(i, j) can be defined analogously. In this case,
NNFM loss can be written as:

ℓnfm(Pview, Pstyle) =
1

N

∑
i,j

min
i′,j′

D(Pview(i, j), Pstyle(i
′, j′)),

(2)
where N is the number of pixels in Mstyle, and D(η, ξ) is the
corresponding cosine distance of two vectors η, ξ where

D(η, ξ) = 1− ηT ξ

∥η∥∥ξ∥
. (3)

So for each feature in Pstyle, our goal is to minimize its cosine
distance (Eq. (3)) to its nearest viewpoint in the style image’s
VGG feature space (Pstyle).

Note that the optimization result of (eq2) will lead to Over-
stylization and then make it difficult to identify the content.
To address this problem, we add a penalizing function where

ℓ = ℓnfm(Pview, Pstyle) + δℓ2(Pview, Poriginal). (4)

In this equation, δ is the trade-off parameter, and Poriginal is
the content of the image in the original scene.



Fig. 4. Feature extraction based on CLIP workflow

C. Feature extraction based on CLIP

CLIP has achieved great success in mapping images and
texts to a shared embedding space. Notably, CLIP can extract
high-level semantic information from images. In this paper,
we use CLIP’s encoder as the feature extractor for the second
part. By projecting the features of the scene image into the
subspace of the style image features, we enhance the effect of
style transfer. The CLIP image encoder Ei extracts the feature
vector Fc from the style image Ia and we have

Fc = Ei(Ia). (5)

Subsequently, we utilize the mapping module fm to estab-
lish a correspondence between the CLIP text-image feature
vectors Fc and the style feature representation:

Frc OR Fsc = fm(Fc) (6)

Note that the styles can be represented by mean µ1 and
standard-deviation σ1, and we have

(σ1, µ1) = Fsc. (7)

To refine the CLIP branch, we incorporate style feature
loss to evaluate the coherence between the mapping module’s
output and the VGG branch’s style features, i.e.,

Lclip = ∥F v
s − F c

s ∥
2
2 (8)

where
F v
s = (σv, µv), F c

s = (σc, µc). (9)

CLIP extracts features from training images and integrates
these features to derive multi-space representations, enabling
the 3D selector to learn the capability for pixel-level feature
querying.

This module consists of two steps. First, we define the
mapping from the CLIP space to the style space. Then, we
introduce a loss function to calculate the difference between
our output and the style features. The integration of these two
parts significantly enhances the effect of style transfer.

IV. EXPERIMENTS

The goal of this section is to give a thorough evaluation
of our ERF method. The details of the experiments and the
corresponding results, see Fig. 5, are given in Section IV.A .
In Section IV.B, we compared our method with the current

Fig. 5. Results of our ERF in different scenes with different styles.

state-of-the-art method in 3D scene stylization as in REF-
NPR[8], ARF[9], and SNeRF[12]. Also, we demonstrated the
effectiveness of our dilated samples.

A. Implementation Details

We use Plenoxels[3] as the based radiation field. We refer-
ence method ARF and extract content features from the layer
3 conv of the pre-trained VGG16 model. Also, we use Lstyle
with the same settings as in NNST[4] and ARF, as well as the
color preservation matrix from ARF.

After updating the style migration network, we observed
that setting the content loss parameter λ = 0.1, Style loss
parameter µ = 20, and setting the EMA’s factor = 3,
channels = 3 can achieve the best results. All experiments
were conducted on a single RTX3090.

B. Comparison

In Fig. 6, we compare our results with current state-of-the-
art 3D scene stylization methods. For SNeRF, the synthesized
texture is not refined enough and cannot convey complex
textures such as the distorted sky in Van Gogh’s Starry Night.
Also, it cannot synthesize its stylistic features such as the
petals of a flower still reference to the color of the image.
For Ref-NPR, the style migration of arbitrary styles is very
bad, almost like the effect of a stylized image. For ARF,
although the result looks more transparent, it learns more about
the average texture of the whole image, which is not what
we expect. In contrast, our model remembers a globalized
style features through the EMA module and achieves semantic



Fig. 6. Comparison Results of our ERF, ARF, Ref-NPR, and SNeRF

weak supervision through the CLIP module with zero-style
migration, which has better style migration results on the
overall image.

C. Ablation

In order to verify the effectiveness of our proposed EMA
and CLIP, we evaluated our method’s performance by re-
moving either the EMA or CLIP modules. We observed
that without the CLIP module, the resulting model exhibited
significant fuzziness, possibly due to the absence of Lclip

and Lcontent. Conversely, upon removing the EMA module,
although the images became clearer, we noted a decrease in
stylization quality This decrease indicates the importance of
the EMA module in maintaining global style coherence.

V. DISCUSSION

Our ERF method has experimentally demonstrated its ef-
fectiveness in 3D scene stylization, being able to learn and
synthesize novel perspectives with geometric and semantic
consistency from 2D stylized images. However, we found in
our experiments that the EMA module may lead to loss of
stylistic details in some cases. This suggests that we need

to further explore how to balance the relationship between
the global style migration and the local detail preservation in
future work. We also realize that there is some ambiguity in
the text-image feature space of CLIP. In future work, we plan
to explore more accurate text-image feature mapping methods
to improve the accuracy and controllability of text-based style
migration.

Fig. 7. Our full ERF and the ERF w/o CLIP, the ERF w/o EMA

VI. CONCLUSION

In this paper, we propose a novel 3D scene stylization
method called ERF, which achieves artistic style transfor-
mation by combining the radiance fields of a 2D stylized
image and a 3D scene. The ERF method utilizes Nearest
Neighbor Feature Matching Loss to transfer complex high-
frequency visual details from a 2D stylized image to a 3D
scene with consistency across multiple viewpoints. In addition,
ERF introduces the EMA module and the CLIP module to
enhance global style migration and efficiently inject the overall
style into the 3D scene using text and images. Experimentally,
ERF is able to generate novel viewpoint stylization results with
geometric and semantic consistency while maintaining content
recognition, demonstrating higher stylization quality and detail
expressiveness compared to existing methods.
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